Abstract
This paper features a study of statistical inference for linear inverse problems with Gaussian noise and priors in structured Banach spaces. Employing the tools of sectorial operators and Gaussian measures on Banach spaces, we overcome the theoretical difficulty of lacking the bias-variance decomposition in Banach spaces, characterize the posterior distribution of solution though its Radon–Nikodym derivative, and derive the optimal convergence rates of the corresponding square posterior contraction and the mean integrated square error. Our theoretical findings are applied to two scenarios, specifically a Volterra integral equation and an inverse source problem governed by an elliptic partial differential equation. Our investigation demonstrates the superiority of our approach over classical results. Notably, our method achieves same order of convergence rates for solutions with reduced smoothness even in a Hilbert setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.