Abstract
We have used the squid giant synapse to determine the role of synaptobrevin, integral membrane proteins of small synaptic vesicles, in neurotransmitter release. The sequence of squid synaptobrevin, deduced by cDNA cloning, is 65%–68% identical to mammalian isoforms and includes the conserved cleavage site for tetanus and botulinum B toxins. Injection of either toxin into squid nerve terminals caused a slow, irreversible inhibition of release without affecting the Ca 2+ signal which triggers release. Microinjection of a recombinant protein corresponding to the cytoplasmic domain of synaptobrevin produced a more rapid and reversible inhibition of release, whereas two smaller peptide fragments were without effect. Electron microscopy of tetanus-injected terminals revealed an increased number of both docked and undocked synaptic vesicles. These data indicate that synaptobrevin participates in neurotransmitter release at a step between vesicle docking and fusion.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have