Abstract

The current disagreement about the Hubble constant H0 was described as a “Crisis in Cosmology”, at the April (2018) Meeting of the American Physical Society, and hence its resolution is of utmost importance. This work proposes that the solution to the disagreement between the Planck Collaboration cosmic microwave background (CMB) value of H0, together with the very close BOSS Collaboration baryon acoustic oscillation (BAO) value, and the significantly higher value of H0 found by the SHOES Collaboration cosmic distance ladder (CDL) work, is due to the fact that the CMB and BAO values of H0 are not for an accelerating universe, as generally believed, but are actually the values for a decelerating universe. In contrast, the CDL value of H0 is indeed that for an accelerating universe. It is shown that by replacing the negative deceleration parameter in the expression for logH0 in the CDL work by a positive deceleration parameter, the value of H0 can be brought down to agree with the CMB and BAO lower values. There is a brief review of the author’s decelerating model based on the Einstein de Sitter universe, augmented by a model of dark energy that does not have a negative pressure, but instead has a non-dispersive index of refraction n, causing the speed of light through the dark energy of intergalactic space to be reduced to c/n. As reported earlier, this assumption is sufficient to accommodate the increase in apparent magnitude of the Type Ia supernovae (SNe Ia). Additional support for the model is presented, together with a proposal for astronomical falsification.

Highlights

  • This work proposes that the solution to the disagreement between the Planck Collaboration cosmic microwave background (CMB) value of H0, together with the very close BOSS Collaboration baryon acoustic oscillation (BAO) value, and the significantly higher value of H0 found by the SHOES Collaboration cosmic distance ladder (CDL) work, is due to the fact that the CMB and BAO values of H0 are not for an accelerating universe, as generally believed, but are the values for a decelerating universe

  • The above work has shown that one can resolve the current disagreement about the Hubble constant by assuming that the CMB and BAO determinations of H0 are not for the accelerating ΛCDM universe, but for a decelerating Einstein de Sitter (EdS) universe, in which the density parameter for the dark energy in the EdS universe satisfies the relation Ωde =ΩΛ

  • In order to obtain the additional distance in the EdS decelerating universe that is needed to explain the increased apparent magnitude of the SNe Ia that led astronomers [9] [10] [11] to infer that the universe is accelerating, it is necessary to assume the speed of light through the dark energy of intergalactic space (IGS) is reduced to c/n, where n ≈ 1.5

Read more

Summary

Introduction

The purpose of this work is to show that there is a possible solution to the problem based on the author’s proposal in [1], and further developed in [2] [3] [4] [5], that the universe is not accelerating, but is decelerating.

Brief Review of the Decelerating Model
Application to the Hubble Constant Disagreement
Additional Predictions of the Model
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.