Abstract
Massive galactic lenses with large Einstein Radii should cause a measurable astrometric microlensing effect, that is, a light centroid shift due to the motion of the two images. Such a shift in the position of a background star due to microlensing was not included in the Gaia astrometric model, and therefore significant deviation should cause Gaia’s astrometric parameters to be determined incorrectly. Here we study one of the photometric microlensing events reported in the Gaia Data Release 3, GaiaDR3-ULENS-001, for which a poor goodness of Gaia fit and erroneous parallax could indicate the presence of an astrometric microlensing signal. Based on the photometric microlensing model, we simulated Gaia astrometric time series with the astrometric microlensing effect added. We find that including microlensing with an angular Einstein radius of θE = 2.60−0.24+0.21 mas (2.47−0.24+0.28 mas) assuming a positive (negative) impact parameter, u0, reproduces the astrometric quantities reported by Gaia well. We estimate the mass of the lens to be 1.00−0.18+0.23 M⊙ (0.70−0.13+0.17 M⊙) and its distance 0.90−0.11+0.14 kpc (0.69−0.09+0.13 kpc), proposing the lens could be a nearby isolated white dwarf.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.