Abstract
The spin-1/2 Ising–Heisenberg model on a diamond-decorated square lattice is exactly solved by the decoration-iteration transformation, which establishes an exact mapping correspondence with the spin-1/2 Ising model on a square lattice with an effective temperature-dependent interaction between the nearest-neighbor spins. Exact results for the pair correlation function and spontaneous magnetization of the Heisenberg spins gained from the exact mapping equivalence allow a straightforward implementation of the concurrence, which may serve as a measure of the bipartite entanglement within decorating Heisenberg spin pairs. It is evidenced that the concurrence gradually diminishes upon increase of temperature above a disordered monomer-dimer ground state until it completely vanishes at a threshold temperature, while the concurrence is either always zero above a spontaneously ordered ferrimagnetic ground state or it shows a peculiar thermally assisted reentrance accompanied with a mutual coexistence of the spontaneous ferrimagnetic long-range order and the thermal entanglement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.