Abstract

AbstractThere is evidence for a spectral line at Eγ ≈ 130 GeV in the Fermi ‐LAT data that can be explained as dark mater particles annihilating into photons. We review a well known dark matter model that consists in a singlet Dirac fermion and a singlet scalar. The scalar implements spontaneous symmetry breaking in the dark sector, and is responsible for the communication between dark matter and standard model particles through a coupling to the Higgs. These interactions are suppressed by the mixing between the scalar and the Higgs. Therefore, the singlet fermionic dark matter is naturally a weakly interacting massive particle (WIMP) and can explain the observed relic density. We show that this model cannot produce the signal identified in the Fermi ‐LAT data. Thus, we propose a modification in the model by introducing a new scalar multiplet that carries electric charge and couples to the singlet scalar. It enhances the annihilation into two photons and succeeds in producing the observed signal. We also discuss the resulting increase of the branching ratio of the h → γγ process, which is consistent with measurements from the CMS experiments. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.