Abstract
In this paper, we consider the development of central discontinuous Galerkin methods for solving the nonlinear shallow water equations over variable bottom topography in one and two dimensions. A reliable numerical scheme for these equations should preserve still-water stationary solutions and maintain the non-negativity of the water depth. We propose a high-order technique which exactly balances the flux gradients and source terms in the still-water stationary case by adding correction terms to the base scheme, meanwhile ensures the non-negativity of the water depth by using special approximations to the bottom together with a positivity-preserving limiter. Numerical tests are presented to illustrate the accuracy and validity of the proposed schemes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have