Abstract

BackgroundNewborns with critical health conditions are monitored in neonatal intensive care units (NICU). In NICU, one of the most important problems that they face is the risk of brain injury. There is a need for continuous monitoring of newborn's brain function to prevent any potential brain injury. This type of monitoring should not interfere with intensive care of the newborn. Therefore, it should be non-invasive and portable.MethodsIn this paper, a low-cost, battery operated, dual wavelength, continuous wave near infrared spectroscopy system for continuous bedside hemodynamic monitoring of neonatal brain is presented. The system has been designed to optimize SNR by optimizing the wavelength-multiplexing parameters with special emphasis on safety issues concerning burn injuries. SNR improvement by utilizing the entire dynamic range has been satisfied with modifications in analog circuitry.Results and ConclusionAs a result, a shot-limited SNR of 67 dB has been achieved for 10 Hz temporal resolution. The system can operate more than 30 hours without recharging when an off-the-shelf 1850 mAh-7.2 V battery is used. Laboratory tests with optical phantoms and preliminary data recorded in NICU demonstrate the potential of the system as a reliable clinical tool to be employed in the bedside regional monitoring of newborn brain metabolism under intensive care.

Highlights

  • Newborns with critical health conditions are monitored in neonatal intensive care units (NICU)

  • When light in the near infrared (NIR) range of the spectrum is shone through the scalp, injected photons follow various paths inside the head

  • When the absorption spectrum of light is analyzed, it is seen that the main absorbers in the NIR range are blood chromophores of oxygenated and deoxygenated hemoglobin (HbO2 and Hb, respectively)

Read more

Summary

Introduction

Newborns with critical health conditions are monitored in neonatal intensive care units (NICU). There is a need for continuous monitoring of newborn's brain function to prevent any potential brain injury. This type of monitoring should not interfere with intensive care of the newborn. When light in the near infrared (NIR) range of the spectrum is shone through the scalp, injected photons follow various paths inside the head. Some of these photons are absorbed by different layers of the tissue such as skin, skull and brain. The procedure of estimating blood chromophore concentrations by means of near infrared light is called Near Infrared Spectroscopy (NIRS)[1]. Blood chromophore information can be used (page number not for citation purposes)

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.