Abstract

A novel combination of catalyst carrier and reactor design was developed for intensified production of vitamin intermediates. The so called Design Porous Structured Reactor (DPSR) is a laser sintered porous 3D-structure that can be tailored to the desired reaction properties such as fluid conditions or heat removal and can also act simultaneously as catalyst support.The selective hydrogenation of 2-methyl-3-butyn-2-ol (MBY) to 2-methyl-3-buten-2-ol (MBE) under solvent-free conditions was chosen as the reaction to evaluate the potential of DPSRs in comparison to conventional batch reactors. DPSR experiments were performed at varying temperatures and liquid flow rates.DPSRs exceeded batch performance in terms of selectivity, yield and turnover frequency in the analyzed process parameter range. However, DPSRs showed some mass transfer effects. Selectivities and yields increased with higher liquid flow rate due to reduced system pressures and sharper residence time distributions.Overall mass transfer coefficients for DPSRs were determined based on an isothermal non-ideal plug flow model applying heterogeneous Langmuir–Hinshelwood kinetics to account for the chemical conversion. The model showed sufficient accuracy to describe the occurring mass transfer processes.DPSRs were found to be viable alternative for batch reactors, demonstrating the potential for process intensification with an inherent potential for further improvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.