Abstract
An edge ranking of a graph G is a labeling r of its edges with positive integers such that every path between two different edges e u , e v with the same rank r ( e u ) = r ( e v ) contains an intermediate edge e w with rank r ( e w ) > r ( e u ) . An edge ranking of G is minimum if the largest rank k assigned is the smallest among all rankings of G. The edge ranking problem is to find a minimum edge ranking of given graph G. This problem is NP-hard and no polynomial time algorithm for solving it is known for non-trivial classes of graphs other than the class of trees. In this paper, we first show, on a general graph G, a relation between a minimum edge ranking of G and its minimal cuts, which ensures that we can obtain a polynomial time algorithm for obtaining minimum edge ranking of a given graph G if minimal cuts for each subgraph of G can be found in polynomial time and the number of those is polynomial. Based on this relation, we develop a polynomial time algorithm for finding a minimum edge ranking on a 2-connected outerplanar graph.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.