Abstract

In this paper, we introduce the problem of computing a minimum edge ranking spanning tree (MERST); i.e., find a spanning tree of a given graph G whose edge ranking is minimum. Although the minimum edge ranking of a given tree can be computed in polynomial time, we show that problem MERST is NP-hard. Furthermore, we present an approximation algorithm for MERST, which realizes its worst case performance ratiominΔ*−1logn/Δ*,Δ*−1logΔ*+1−1where n is the number of vertices in G and Δ* is the maximum degree of a spanning tree whose maximum degree is minimum. Although the approximation algorithm is a combination of two existing algorithms for the restricted spanning tree problem and for the minimum edge ranking problem of trees, the analysis is based on novel properties of the edge ranking of trees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.