Abstract

We give a kernel with O(k^7) vertices for Trivially Perfect Editing, the problem of adding or removing at most k edges in order to make a given graph trivially perfect. This answers in affirmative an open question posed by Nastos and Gao (Soc Netw 35(3):439–450, 2013), and by Liu et al. (Tsinghua Sci Technol 19(4):346–357, 2014). Our general technique implies also the existence of kernels of the same size for related Trivially Perfect Completion and Trivially Perfect Deletion problems. Whereas for the former an O(k^3) kernel was given by Guo (in: ISAAC 2007, LNCS, vol 4835, Springer, pp 915–926, 2007), for the latter no polynomial kernel was known. We complement our study of Trivially Perfect Editing by proving that, contrary to Trivially Perfect Completion, it cannot be solved in time 2^{o(k)}cdot n^{O(1)} unless the exponential time hypothesis fails. In this manner we complete the picture of the parameterized and kernelization complexity of the classic edge modification problems for the class of trivially perfect graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.