Abstract
This thesis addresses the kernelization properties of generic problems, defined via syntactical restrictions or by a problem framework. Polynomial kernelization is a formalization of data reduction, aimed at combinatorially hard problems, which allows a rigorous study of this important and fundamental concept. The thesis is organized into two main parts. In the first part we prove that all problems from two syntactically defined classes of constant-factor approximable problems admit polynomial kernelizations. The problems must be expressible via optimization over first-order formulas with restricted quantification; when relaxing these restrictions we find problems that do not admit polynomial kernelizations. Next, we consider edge modification problems, and we show that they do not generally admit polynomial kernelizations. In the second part we consider three types of Boolean constraint satisfaction problems. We completely characterize whether these problems admit polynomial kernelizations, i.e., given such a problem our results either provide a polynomial kernelization, or they show that the problem does not admit a polynomial kernelization. These dichotomies are characterized by properties of the permitted constraints. The thesis is written in English.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.