Abstract
Developing a straightforward strategy for constructing highly processable photonic crystals (PCs) is crucial for various applications, yet remains a challenge. Here, we present a simple polyelectrolyte-induced self-assembly strategy for producing novel photonic crystal (PC) inks with outstanding processing flexibility by adding the polyelectrolytes into the ultralow concentration of colloidal nanoparticle solution. The polyelectrolyte can cover the nanoparticles through the hydrogen bond interaction to induce the aggregation and mutual repulsion of them simultaneously, enabling the self-assembly of ultralow concentration (0.01–1.0 v/v%) of nanoparticles into short-range ordered arrays with angle-independent structural colors. The resulting PC inks present unprecedented pigment-like color modulation capacity, as well as ultrahigh freedom in processing methods due to the fact that the rheological behaviors of PC inks can be widely adjusted by varying the properties of polyelectrolytes. Consequently, the PC inks can be easily shaped into complex and exquisite multicolor patterns/3D structures using various techniques, including injection molding, writing, drawing, and 3D printing. This general approach paves the way for quick and scalable production of advanced PC materials deeply required in practical applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have