Abstract

A novel non-leaching antibacterial bone cement has been developed and evaluated. An antibacterial furanone derivative was synthesized and covalently coated onto the surface of alumina filler particles, followed by mixing into a conventional poly(methyl methacrylate) bone cement. Flexural strength and bacterial viability were used to evaluate the modified cements. Effects of coated antibacterial moiety content, coated alumina filler particle size and loading were investigated. Results showed that almost all the modified cements showed higher flexural strength (up to 10%), flexural modulus (up to 18%), and antibacterial activity (up to 67% to S. aureus and up to 84% to E. coli), as compared to original poly(methyl methacrylate) cement. Increasing antibacterial moiety and filler loading significantly enhanced antibacterial activity. On the other hand, increasing coated filler particle size decreased antibacterial activity. Increasing antibacterial moiety content and particle size did not significantly affect flexural strength and modulus. Increasing filler loading did not significantly affect flexural modulus but reduced flexural strength. Antibacterial agent leaching tests showed that it seems no leachable antibacterial component from the modified experimental cement to the surrounding environment. Within the limitations of this study, the modified poly(methyl methacrylate) bone cement may potentially be developed into a clinically useful bone cement for reducing in-surgical and post-surgical infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call