Abstract

The exact biosynthetic pathways leading to benzoic acid (BA) formation in plants are not known, but labeling experiments indicate the contribution of both beta-oxidative and non-beta-oxidative pathways. In Petunia hybrida BA is a key precursor for the production of volatile benzenoids by its flowers. Using functional genomics, we identified a 3-ketoacyl-CoA thiolase, PhKAT1, which is involved in the benzenoid biosynthetic pathway and the production of BA. PhKAT1 is localised in the peroxisomes, where it is important for the formation of benzoyl-CoA-related compounds. Silencing of PhKAT1 resulted in a major reduction in BA and benzenoid formation, leaving the production of other phenylpropanoid-related volatiles unaffected. During the night, when volatile benzenoid production is highest, it is largely the beta-oxidative pathway that contributes to the formation of BA and benzenoids. Our studies add the benzenoid biosynthetic pathway to the list of pathways in which 3-ketoacyl-CoA thiolases are involved in plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.