Abstract

SummaryConserved translocator proteins (TSPOs) mediate cell stress responses possibly in a cell-type-specific manner. This work reports on the molecular function of plant TSPO and their possible evolutionary divergence. Arabidopsis thaliana TSPO (AtTSPO) is stress induced and has a conserved polybasic, plant-specific N-terminal extension. AtTSPO reduces water loss by depleting aquaporin PIP2;7 in the plasma membrane. Herein, AtTSPO was found to bind phosphoinositides in vitro, but only full-length AtTSPO or chimeric mouse TSPO with an AtTSPO N-terminus bound PI(4,5)P2in vitro and modified PIP2;7 levels in vivo. Expression of AtTSPO but not its N-terminally truncated variant enhanced phospholipase C activity and depleted PI(4,5)P2 from the plasma membrane and its enrichment in Golgi membranes. Deletion or point mutations within the AtTSPO N-terminus affected PI(4,5)P2 binding and almost prevented AtTSPO-PIP2;7 interaction in vivo. The findings imply functional divergence of plant TSPOs from bacterial and animal counterparts via evolutionary acquisition of the phospholipid-interacting N-terminus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call