Abstract

This paper presents a front-end application-specified integrated circuit (ASIC) integrated with a 2-D PZT matrix transducer that enables in-probe digitization with acceptable power dissipation for the next-generation endoscopic and catheter-based 3-D ultrasound imaging systems. To achieve power-efficient massively parallel analog-to-digital conversion (ADC) in a 2-D array, a 10-bit 30 MS/s beamforming ADC that merges the subarray beamforming and digitization functions in the charge domain is proposed. It eliminates the need for costly intermediate buffers, thus significantly reducing both power consumption and silicon area. Self-calibrated charge references are implemented in each subarray to further optimize the system-level power efficiency. High-speed datalinks are employed in combination with the subarray beamforming scheme to realize a 36-fold channel-count reduction and an aggregate output data rate of 6 Gb/s for a prototype receive array of $24 \times 6$ elements. The ASIC achieves a record power efficiency of 0.91 mW/element during receive. Its functionality has been demonstrated in both electrical and acoustic imaging experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.