Abstract

Fungal phytopathogens are a significant threat to crops and food security, and there is a constant need to develop safe and effective compounds that antagonize them. In-planta assays are complex and tedious and are thus not suitable for initial high-throughput screening of new candidate antifungal compounds. We propose an in vitro screening pipeline that integrates five rapid quantitative and qualitative methods to estimate the efficacy and mode of action of prospective antifungal compounds. The pipeline was evaluated using five documented antifungal compounds (benomyl, catechol, cycloheximide, 2,4-diacetylphloroglucinol, and phenylacetic acid) that have different modes of action and efficacy, against the model soilborne fungal pathogen Fusarium oxysporum f. sp. radicis cucumerinum. We initially evaluated the five compounds' ability to inhibit fungal growth and metabolic activity using green fluorescent protein (GFP)-labeled F. oxysporum and PrestoBlue staining, respectively, in multiwell plate assays. We tested the compounds' inhibition of both conidial germination and hyphal elongation. We then employed FUN-1 and SYTO9/propidium iodide staining, coupled to confocal microscopy, to differentiate between fungal growth inhibition and death at the cellular level. Finally, using a reactive oxygen species (ROS)-detection assay, we were able to quantify ROS production in response to compound application. Collectively, the proposed pipeline provides a wide array of quantitative and qualitative data on the tested compounds that can help pinpoint promising novel compounds; these can then be evaluated more vigorously using in planta screening assays. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.