Abstract

Parkinson's disease (PD) is one of the most common neurodegenerative disorders worldwide. Current identification and monitoring of its motor symptoms depends on the clinical expertise. Repetitive finger tapping is one of the most common clinical maneuvers to assess for bradykinesia. Despite the increasing use of technology aids to quantitatively characterize the motor symptoms of PD, there is still a relative lack of clinical evidence to support their widespread use, particularly in low-resource settings. In this pilot study, we used a low-cost design prototype coupled with an inertial sensor is coupled to quantify the frequency of the finger tapping movements in four participants with PD. Repetitive finger tapping was performed using both hands before and after taking levodopa as part of their clinical treatment. The proposed 3D design allowed repetitive movements to be performed without issues. The maximum frequency of finger tapping was in the range of 0.1 to 4.3 Hz. Levodopa was associated with variable changes in the maximum frequency of finger tapping. This pilot study shows the feasibility for low-cost technology to quantitatively characterize repetitive movements in people living with PD.Clinical relevance- In this pilot study, a low-cost inertial sensor coupled to a design prototype was feasible to characterize the frequency of repetitive finger tapping movements in four participants with PD. This method could be used to quantitatively identify and monitor bradykinesia in people living with PD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call