Abstract
Managing shelf space is critical for retailers to attract customers and optimize profits. This article develops a shelf-space allocation optimization model that explicitly incorporates essential in-store costs and considers space- and cross-elasticities. A piecewise linearization technique is used to approximate the complicated nonlinear space-allocation model. The approximation reformulates the non-convex optimization problem into a linear mixed integer programming (MIP) problem. The MIP solution not only generates near-optimal solutions for large scale optimization problems, but also provides an error bound to evaluate the solution quality. Consequently, the proposed approach can solve single category-shelf space management problems with as many products as are typically encountered in practice and with more complicated cost and profit structures than currently possible by existing methods. Numerical experiments show the competitive accuracy of the proposed method compared with the mixed integer nonlinear programming shelf-space model. Several extensions of the main model are discussed to illustrate the flexibility of the proposed methodology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.