Abstract

There is a clinical need to understand the etiologies of periodontitis, considering the growing socio-economic impact of the disease. Despite recent advances in oral tissue engineering, experimental approaches have failed to develop a physiologically relevant gingival model that combines tissue organization with salivary flow dynamics and stimulation of the shedding and non-shedding oral surfaces. Herein, we develop a dynamic gingival tissue model composed of a silk scaffold, replicating the cyto-architecture and oxygen profile of the human gingiva, along with a saliva-mimicking medium that reflected the ionic composition, viscosity, and non-Newtonian behavior of human saliva. The construct was cultured in a custom designed bioreactor, in which force profiles on the gingival epithelium were modulated through analysis of inlet position, velocity and vorticity to replicate the physiological shear stress of salivary flow. The gingival bioreactor supported the long-term in vivo features of the gingiva and improved the integrity of the epithelial barrier, critical against the invasion of pathogenic bacteria. Furthermore, the challenge of the gingival tissue with P. gingivalis lipopolysaccharide, as an in vitro surrogate for microbial interactions, indicated a greater stability of the dynamic model in maintaining tissue homeostasis and, thus, its applicability in long-term studies. The model will be integrated into future studies with the human subgingival microbiome to investigate host-pathogen and host-commensal interactions. Statement of significanceThe major societal impact of human microbiome had reverberated up to the establishment of the Common Fund's Human Microbiome Project, that has the intent of studying the role of microbial communities in human health and diseases, including periodontitis, atopic dermatitis, or asthma and inflammatory bowel disease. In addition, these chronic diseases are emergent drivers of global socioeconomic status. Not only common oral diseases have been shown to be directly correlated with several systemic conditions, but they are differentially impacting some racial/ethnic and socioeconomic groups. To address this growing social disparity, the development of in vitro gingival model would provide a time and cost-effective experimental platform, able to mimic the spectrum of periodontal disease presentation, for the identification of predictive biomarkers for early-stage diagnosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call