Abstract

A physics-based model and the corresponding simulation framework for the mobile-ionic field-effect transistor (MIFET) exhibiting the ferroelectric-like behaviors are innovatively proposed based on two-dimensional (2D) Poisson’s equation and non-equilibrium Green’s function (NEGF), coupling with ion drift-diffusion equations. The simulation framework captures the dynamic distribution of mobile ions’ concentrations within dielectric along the external electric field. TaN/amorphous-ZrO2/TaN capacitors are experimentally characterized for the model calibration. It is proved that the mobile ions dominate the ferroelectriclike behaviors in MIFETs. Sub-60 mV/decade can be achieved in MIFETs based on the proposed model, which is consistent with the experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.