Abstract

A physics-based analytical compact model of InGaAs field-effect transistors (FETs) for digital logic applications is developed. This model neither heavily depends on parameter extraction nor requires any time-consuming computation while capturing the essential physics, enabling digital circuit design and circuit-level performance estimation for III-V FETs. The model captures short channel effects, trapezoidal-shape quantum-well energies, bias-dependent ballistic ratios, and capacitances including 2D potential profile information. Each is verified via numerical calculations and 2D electrostatic simulation, followed by a comparison of the model I-V characteristics with experiment data. Finally, the transient response of FO4 inverters demonstrates the use of the compact model for future technology circuit simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call