Abstract

A material model to predict kink-band formation and growth under a 3D stress state is proposed. 3D kinking theory is used in combination with a physically based constitutive law of the material in the kink-band, accounting for friction on the microcracks of the damaged material. In contrast to existing models, the same constitutive formulation is used for fibre kinking and for the longitudinal shear and transverse responses, thereby simplifying the material identification process. The full collapse response as well as a crush stress can be predicted. The model is compared with an analytical model, a micromechanical finite element analysis and crushing tests. In all cases the present model predicts well the different stages of kink-band formation and crushing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.