Abstract

A multiscale method is presented to develop a constitutive model for anisotropic soils in a three-dimensional (3D) stress state. A fabric tensor and its evolution, which quantify the particle arrangement at the microscale, are adopted to describe the effects of the inherent and induced anisotropy on the mechanical behaviors at the macroscale. Using two steps of stress mapping, the deformation and failure of anisotropic soil under the 3D stress state are equivalent to those of isotropic soil under the triaxial compression stress state. A series of discrete element method (DEM) simulations are conducted to preliminarily verify this equivalence. Based on the above method, the obtained anisotropic yield surface is continuous and smooth. Then, a fabric evolution law is established according to the DEM simulation results. Compared with the rotational hardening law, the fabric evolution law can also make the yield surface rotate during the loading process, and it can grasp the microscopic mechanism of soil deformation. As an example, an anisotropic modified Cam-clay model is developed, and its performance validates the ability of the proposed method to account for the effect of soil anisotropy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.