Abstract

To guarantee that an application specific integrated circuits (ASIC) meets its timing requirement, at-speed scan testing becomes an indispensable procedure for verifying the performance of ASIC. However, at-speed scan test suffers the test-induced yield loss. Because the switching activity in test mode is much higher than that in normal mode, the switching-induced large current drawn causes severe IR drop and increases gate delay. X-filling is the most commonly used technique to reduce IR-drop effect during at-speed test. However, the effectiveness of X-filling depends on the number and the characteristic of X-bit distribution. In this paper, we propose a physical-location-aware X-identification which redistributes faults so that the maximum switching activity is guaranteed to be reduced after X-filling. The experimental results on ITC'99 show that our method has an average of 8.54% more reduction of maximum IR-drop as compared to a previous work which re-distributes X-bits evenly in all test vectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.