Abstract

We show results of a self-consistent large-signal electro-thermal GaN HEMT model that includes trap-related and self-heating dispersion effects. Both self-heating and trap dynamics are treated with a strictly physical approach that makes it easier to link the model parameter with the physical HEMT structure and material characteristics. The model, implemented in ADS, is applied to measured DC data taken at ambient temperatures between 200 K and 400 K, with excellent results. Several examples are given of dynamic HEMT simulation, showing the co-existence and the interaction of temperature- and trap-related dispersive effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.