Abstract

BackgroundGlobins occur in all three kingdoms of life: they can be classified into single-domain globins and chimeric globins. The latter comprise the flavohemoglobins with a C-terminal FAD-binding domain and the gene-regulating globin coupled sensors, with variable C-terminal domains. The single-domain globins encompass sequences related to chimeric globins and «truncated» hemoglobins with a 2-over-2 instead of the canonical 3-over-3 α-helical fold.ResultsA census of globins in 26 archaeal, 245 bacterial and 49 eukaryote genomes was carried out. Only ~25% of archaea have globins, including globin coupled sensors, related single domain globins and 2-over-2 globins. From one to seven globins per genome were found in ~65% of the bacterial genomes: the presence and number of globins are positively correlated with genome size. Globins appear to be mostly absent in Bacteroidetes/Chlorobi, Chlamydia, Lactobacillales, Mollicutes, Rickettsiales, Pastorellales and Spirochaetes. Single domain globins occur in metazoans and flavohemoglobins are found in fungi, diplomonads and mycetozoans. Although red algae have single domain globins, including 2-over-2 globins, the green algae and ciliates have only 2-over-2 globins. Plants have symbiotic and nonsymbiotic single domain hemoglobins and 2-over-2 hemoglobins. Over 90% of eukaryotes have globins: the nematode Caenorhabditis has the most putative globins, ~33. No globins occur in the parasitic, unicellular eukaryotes such as Encephalitozoon, Entamoeba, Plasmodium and Trypanosoma.ConclusionAlthough Bacteria have all three types of globins, Archaeado not have flavohemoglobins and Eukaryotes lack globin coupled sensors. Since the hemoglobins in organisms other than animals are enzymes or sensors, it is likely that the evolution of an oxygen transport function accompanied the emergence of multicellular animals.

Highlights

  • Globins occur in all three kingdoms of life: they can be classified into single-domain globins and chimeric globins

  • The crystal structures of several "truncated" Hbs showed them to have a novel 2-over-2 α-helical fold instead of the canonical 3-over-3 α-helical fold, with an abbreviated A helix, a decreased CE interhelical region and most of the F helix occurring as a loop [20,21,22]

  • Among the remaining deuterostome phyla, intracellular Hbs have been reported in two of the 5 classes of echinoderms [84,85], and we find a putative globin in the recent assembly of the genome from the sea urchin Strongylocentrotus purpuratus, which belongs to another class

Read more

Summary

Introduction

Globins occur in all three kingdoms of life: they can be classified into single-domain globins and chimeric globins. The latter comprise the flavohemoglobins with a C-terminal FADbinding domain and the gene-regulating globin coupled sensors, with variable C-terminal domains. The single-domain globins encompass sequences related to chimeric globins and «truncated» hemoglobins with a 2-over-2 instead of the canonical 3-over-3 α-helical fold. The crystal structures of several "truncated" Hbs showed them to have a novel 2-over-2 α-helical fold instead of the canonical 3-over-3 α-helical fold, with an abbreviated A helix, a decreased CE interhelical region and most of the F helix occurring as a loop [20,21,22]. We advocate using 2/2 Hb instead of "truncated", to indicate the distinctive secondary structure of this group of globins and to bring order to the chaotic terminology in the existing databases, where "truncated", "cyanobacterial", "protozoan" and "2-over-2" are all in current use

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call