Abstract

AbstractPerovskite‐type ferroelectrics composed of organometallic halides are emerging as a promising alternative to conventional photovoltaic devices because of their unique photovoltaic effects (PVEs). A new layered perovskite‐type photoferroelectric, bis(cyclohexylaminium) tetrabromo lead (1), is presented. The material exhibits an exceptional anisotropy of bulk PVEs. Upon photoexcitation, superior photovoltaic behaviors are created along its inorganic layers, which are composed of corner‐sharing PbBr6 octahedra. Semiconducting activity with remarkable photoconductivity is achieved in the vertical direction, showing sizeable on/off current ratios (>104), which compete with the most active photovoltaic material CH3NH3PbI3. In 1 the temperature‐dependence of photovoltage coincides fairly well with that of polarization, confirming the dominant role of ferroelectricity in such highly anisotropic PVEs. This finding sheds light on bulk PVEs in ferroelectric materials, and promotes their application in optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.