Abstract

Thin metal overlayer growth on solid xenon was characterized by means of synchrotron radiation photoemission spectroscopy. We employed a simple experimental arrangement in which a closed-cycle refrigerator and in situ evaporated metal films were used as substrate for Xe condensation. A ‘‘sandwich’’ geometry, in which the overlayer metal was used as substrate for Xe condensation, simplified the isolation of metal and Xe emission features. The evolution of the Xe and metal photoemission intensity and the line shape of core and valence states, as a function of metal coverage, were used to estimate average particle size and nucleation site density. The coverage dependence of the Sm 4f binding energy, as well as a number of newly identified spectral fingerprints of particle coalescence, support the measured film morphology and particle size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call