Abstract

The intricate frameworks of paracyclophanes are an important target for synthesis since they are found in various chiral auxiliaries, solar cells, high-performance plastics, pharmaceuticals, and molecular machines. Whereas numerous methods exist for the preparation of symmetric paracyclophanes, protocols for the efficient synthesis of strained asymmetric scaffolds are limited. Here we report a remarkably simple photochemical route to strained [3.2]paracyclophanes starting from readily available educts. By way of NMR and X-ray analyses, we discovered that UV-irradiation of an aromatic carboxylic ester tethered to a toluene moiety leads to the intramolecular formation of a new C-C bond, with loss of an alcohol. A systematic evaluation of the reaction conditions and substituents, as well as radical starter and triplet quenching experiments, point to a reaction mechanism involving an excited triplet state and hydrogen atom transfer. The new method proved to be robust and versatile enabling the synthesis of a range of cyclophanes with different substitutions, including an unusual diastereoisomer with two planar chiral centers, and thus proved to be a valuable addition to the synthetic toolbox.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call