Abstract

A quantitative mercuric detection is very important in the environmental and biological systems. In this paper, we report a novel bis-rhodanine derived fluorescent chemosensor for recognition of Hg2+ ion in DMSO-H2O (1:1) medium. The ‘turn-on’ fluorescence response was exhibited specifically toward Hg2+ over other metal ions by receptor R2 at 410 nm, which could be ascribed to the restriction of photo-induced electron transfer (PET) process and chelation-enhanced fluorescence (CHEF) effect upon the complexation with mercury ions. The complexing stoichiometry of receptor R2 to Hg2+ was estimated to be 1:1 according to Job’s plot experiments. The limit of detection was calculated to be 7.33 × 10−7 M based on the concentration dependent emission changes with good association constant of 8.97 × 104 M−1. As a result, we express that receptor R2 is a promising candidate for Hg2+ recognition without any significant interference of other co-existing cations. The receptor R2 was successfully applied to molecular logic and keypad lock applications and real water samples to determine its potential applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.