Abstract

Mercury is a highly toxic metal that can cause significant harm to humans and aquatic ecosystems. This paper describes a novel approach for mercury (Hg2+) ion detection by using label-free oligonucleotide probes and Escherichia coli exonuclease I (Exo I) in a microfluidic electrophoretic separated platform. Two single-stranded DNAs (ssDNA) TT-21 and TT-44 with 7 Thymine–Thymine mispairs are employed to capture mercury ions. Due to the coordination structure of T–Hg2+–T, these ssDNAs are folded into hairpin-like double-stranded DNAs (dsDNA) which are more difficult to be digested by Exo I, as confirmed by polyacrylamide gel electrophoresis (PAGE) analysis. A series of microfluidic capillary electrophoretic separation studies are carried out to investigate the effect of Exo I and mercury ion concentrations on the detected fluorescence intensity. This method has demonstrated a high sensitivity of mercury ion detection with the limit of detection around 15nM or 3ppb. An excellent selectivity of the probe for mercury ions over five interference ions Fe3+, Cd2+, Pb2+, Cu2+ and Ca2+ is also revealed. This method could potentially be used for mercury ion detection with high sensitivity and reliability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call