Abstract

Reduced glutathione (GSH) is an abundant low molecular weight plant thiol. It fulfills multiple functions in plant biology, many of which remain poorly characterized. A phenomics approach was therefore used to investigate the effects of glutathione homeostasis on growth and stress tolerance in Arabidopsis thaliana. Rosette leaf area was compared in mutants that are either defective in GSH synthesis (cad2, pad2, and rax1) or the export of γ-glutamylcysteine and GSH from the chloroplast (clt) and in wild-type plants under standard growth conditions and following exposure to a range of abiotic stress treatments, including oxidative stress, water stress, and high salt. In the absence of stress, the GSH synthesis mutants had a significantly lower leaf area than the wild type. Conversely, the clt mutant has a greater leaf area and a significantly reduced lateral root density than the wild type. These findings demonstrate that cellular glutathione homeostasis exerts an influence on root architecture and on rosette area. An impaired capacity to synthesize GSH or a specific depletion of the cytosolic GSH pool did not adversely affect leaf area in plants exposed to short-term abiotic stress. However, the negative effects of long-term exposure to oxidative stress and high salt on leaf area were less marked in the GSH synthesis mutants than the wild type. These findings demonstrate the importance of cellular glutathione homeostasis in the regulation of plant growth under optimal and stress conditions.

Highlights

  • Environmental stresses severely limit plant growth and decrease the predictability of crop yields for the farmer

  • The genotypes that are deficient in GSH synthesis were visibility smaller (Figure 1A) and they had a significantly lower leaf area than the wild type (Figure 1B)

  • The results presented here show that the leaves of the clt1clt2clt3 mutants had a similar redox status to the wild-type plants, under optimal growth conditions, with comparable ascorbate and glutathione levels and similar ascorbate/dehydroascorbate, GSH/GSSG, and NAD/NADH ratios, even though the partitioning of GSH between the cytosol and chloroplasts was changed in the clt1clt2clt3 mutants relative to the wild type (Maughan et al, 2010)

Read more

Summary

Introduction

Environmental stresses severely limit plant growth and decrease the predictability of crop yields for the farmer. Plant stress responses are complex traits regulated by large numbers of genes and quantitative trait loci (QTL). This complexity has restricted the success of conventional breeding approaches. Transgenic approaches to enhancing tolerance to complex stresses such as drought have not as yet significantly reduced environmentally related yield losses under field conditions (Lawlor, 2013). A greater understanding of the mechanisms that restrict the growth of plants in response to the imposition of abiotic stress is required to facilitate development and molecular breeding of crop varieties with enhanced stress tolerance traits

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call