Abstract

Isogenic lines of pea (Pisum sativum L.) with the genetically determined changes in leaf morphology, afila (af) and tendril-less (tl), were used to study the relationship between shoot and root growth rates. The time-course of shoot and root growth was followed during the pre-floral period in the intact plants grown under similar conditions. The af mutation produced afila leaves without leaflets, whereas in the case of the tl mutations, tendrils were substituted with leaflets, and acacia-like leaves were developed. Due to the changes in leaf morphology caused by these mutations, pea genotypes differed in leaf area: starting from day 7, the leaf area was lower in the af plants and larger in the tl plants as compared to the wild-type plants. Such divergence was amplified in the course of plant development and reached its maximum immediately before the transition to flowering. Plants of isogenic lines did not notably differ in stem surface areas. In spite of significant difference in total leaf area, the wild type and tl plants did not differ in leaf dry weight. Starting from leaf 9, the af plants lagged behind two leaflet-bearing genotypes (wild type and tl) in leaf dry weight, whereas stem dry weight was similar in the wild type and tl forms and slightly lower in the af plants. Root dry weights were practically similar in the wild type and tl plants until flowering. The reduction of leaf area in the af plants drastically reduced root dry weight. In other words, the latter index was related to the total weight and total area of leaves and stems. The correlation analysis demonstrated an extremely low relationship between leaf and stem area and dry weight and those of roots early in plant development (when plants develop five to seven leaves). Later, immediately before flowering (nine to eleven leaves), root weight was positively related to leaf weight and area; however, stem area and root weight did not correlate. Thus, in three genotypes (wild type, af, and tl), at the end of their vegetative growth phase, leaf and root biomass accumulated in proportion, independently of leaf area expansion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call