Abstract
We present a phenomenological model for studying the constitutive relations and working mechanism of the chemo-responsive shape memory effect (SME) in shape memory polymers (SMPs). On the basis of the solubility parameter equation, diffusion model and permeation transition model, a phenomenological model is derived for quantitatively identifying the influential factors in the chemically induced SME in SMPs. After this, a permeability parallel model and series model are implemented in order to couple the constitutive relations of the permeability coefficient, stress and relaxation time as a function of stretch, separately. The inductive effect of the permeability transition on the transition temperature is confirmed as the driving force for the chemo-responsive SME. Furthermore, the analytical result from the phenomenological model is compared with the available experimental results and the simulation of a semi-empirical model reported in the literature for verification.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have