Abstract

This paper extends the knowledge into the mechanical behaviour characterizations and constitutive modelling of polyethylene (PE) foam under multiple loading and unloading. The mechanical properties of PE foam subjected to single loading cases can be obtained by uniaxial compressive tests at quasi‐static and dynamic states. And the multiple loading and unloading behaviours of the foam can be revealed by consecutive drop tests. The major objective of this research is to propose a phenomenological model consists of shape function and modulus function, which can be predicted compressive response of PE foam for single loading cases. The constitutive models of foamed PE under multiple loading and unloading conditions are established by both using hyperbolic function, where the relations between coefficients and residual strain are introduced. And then, experiments are conducted to validate the proposed model by comparing the constitutive models proposed in this paper and those predicting by finite element software ABAQUS with those by experiments, showing that the proposed models are more accurate for predicting acceleration‐times curves of multiple drop scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.