Abstract

This study proposes a one-dimensional constitutive model for elastomeric materials based on recent observations regarding the separation of elastic and viscous contributions in uniaxial cyclic tensile experiments on EPDM rubber. The focus is on capturing the changes in constitutive behavior and energy dissipation associated with the Mullins effect. In the model, this is achieved through the evolution of both permanent set and hyperelastic parameters of an Edwards-Vilgis function to account for the Mullins effect, and with a viscosity associated with the effective stretch rate of the network to describe the non-linear flow stress. The simulations are able to reproduce the observed constitutive response and its change with increasing levels of pre-deformation. The model is less able to accurately reproduce the virgin loading response, which is achieved via extrapolation to zero pre-strain. However, for practical purposes, where scragging of elastomeric products is the norm, the model is able to predict the cyclic response and the dissipated energy, and their change with different scragging levels in good agreement with experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call