Abstract
Bombesin/gastrin-releasing peptides (BN/GRP) were shown to bind selectively to cell surface receptors, stimulating the growth of various types of malignancies in murine and human models. The novel BN/GRP synthetic receptor antagonist, RC-3095, was able to produce long-lasting tumor regressions in murine and human tumor models in vitro and in vivo. Animal toxicology studies showed no detectable organ toxicity apart from local irritation at the injection site. The purpose of this study was to determine the safety and feasibility of the administration of RC-3095 by daily subcutaneous injections in patients with advanced and refractory solid malignancies. Twenty-five patients received RC-3095 once or twice-daily at doses ranging from 8 to 96 ug/kg. Dose was escalated in groups of 3-5 patients per dose level. The only toxicity observed was local discomfort in the injection site at the highest doses. A single dose administration of RC-3095 at the highest dose level (96 ug/kg) was tested in a clearly hypergastrinemic individual with the Zollingen-Ellison syndrome and produced a decrease in plasma gastrin down to 50% of basal levels in 6 h. There was no objective tumor responses in patients included in the study. A short-lasting minor tumor response was observed in a patient with a GRP-expressing progressive medullary carcinoma of the thyroid. Due to problems with the analytical method, plasma pharmacokinetic data was obtained only from two patients included at the highest dose level. In these patients, RC-3095 reached plasma concentrations >100 ng/mL for about 8 h, which were within therapeutic levels on the basis of prior data obtained in mice and rats. The plasma elimination half-life was between 8.6-10.9 h. Due to the occurrence of local toxicity at the injection site, the dose escalation procedure could not be fully evaluated up to a maximum tolerated dose. Thus, a recommended dose of RC-3095 for Phase II trials could not be clearly established. Considering the novelty of its mechanism of action and impressive preclinical anti-tumor activity, further studies exploiting new formulations of RC-3095 for human use, such as slow-release preparations, and analogues with a more favorable pharmacokinetics are warranted.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have