Abstract

We extend a phase-field/gradient damage formulation for cohesive fracture to the dynamic case. The model is characterized by a regularized fracture energy that is linear in the damage field, as well as non-polynomial degradation functions. Two categories of degradation functions are examined, and a process to derive a given degradation function based on a local stress–strain response in the cohesive zone is presented. The resulting model is characterized by a linear elastic regime prior to the onset of damage, and controlled strain-softening thereafter. The governing equations are derived according to macro- and microforce balance theories, naturally accounting for the irreversible nature of the fracture process by introducing suitable constraints for the kinetics of the underlying microstructural changes. The model is complemented by an efficient staggered solution scheme based on an augmented Lagrangian method. Numerical examples demonstrate that the proposed model is a robust and effective method for simulating cohesive crack propagation, with particular emphasis on dynamic fracture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.