Abstract
There are many important practical optimization problems whose feasible regions are not known to be nonempty or not, and optimizers of the objective function with the least constraint violation prefer to be found. A natural way for dealing with these problems is to extend the nonlinear optimization problem as the one optimizing the objective function over the set of points with the least constraint violation. This leads to the study of the shifted problem. This paper focuses on the constrained convex optimization problem. The sufficient condition for the closedness of the set of feasible shifts is presented and the continuity properties of the optimal value function and the solution mapping for the shifted problem are studied. Properties of the conjugate dual of the shifted problem are discussed through the relations between the dual function and the optimal value function. The solvability of the dual of the optimization problem with the least constraint violation is investigated. It is shown that, if the least violated shift is in the domain of the subdifferential of the optimal value function, then this dual problem has an unbounded solution set. Under this condition, the optimality conditions for the problem with the least constraint violation are established in term of the augmented Lagrangian. It is shown that the augmented Lagrangian method has the properties that the sequence of shifts converges to the least violated shift and the sequence of multipliers is unbounded. Moreover, it is proved that the augmented Lagrangian method is able to find an approximate solution to the problem with the least constraint violation and it has linear rate of convergence under an error bound condition. The augmented Lagrangian method is applied to an illustrative convex second-order cone constrained optimization problem with least constraint violation and numerical results verify our theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.