Abstract
Level-set methods for convex optimization are predicated on the idea that certain problems can be parameterized so that their solutions can be recovered as the limiting process of a root-finding procedure. This idea emerges time and again across a range of algorithms for convex problems. Here we demonstrate that strong duality is a necessary condition for the level-set approach to succeed. In the absence of strong duality, the level-set method identifies epsilon -infeasible points that do not converge to a feasible point as epsilon tends to zero. The level-set approach is also used as a proof technique for establishing sufficient conditions for strong duality that are different from Slater’s constraint qualification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.