Abstract
Duality theory has played a key role in convex programming in the absence of data uncertainty. In this paper, we present a duality theory for convex programming problems in the face of data uncertainty via robust optimization. We characterize strong duality between the robust counterpart of an uncertain convex program and the optimistic counterpart of its uncertain Lagrangian dual. We provide a new robust characteristic cone constraint qualification which is necessary and sufficient for strong duality in the sense that the constraint qualification holds if and only if strong duality holds for every convex objective function of the program. We further show that this strong duality always holds for uncertain polyhedral convex programming problems by verifying our constraint qualification, where the uncertainty set is a polytope. We derive these results by way of first establishing a robust theorem of the alternative for parameterized convex inequality systems using conjugate analysis. We also give a convex characteristic cone constraint qualification that is necessary and sufficient for strong duality between the deterministic dual pair: the robust counterpart and its Lagrangian dual. Through simple numerical examples we also provide an insightful account of the development of our duality theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.