Abstract

In order to perform accurate movements, the nervous system must transform sensory feedback into motor commands that compensate for errors caused by motor variability and external disturbances. Recent studies focusing on the importance of sensory feedback in motor control have illustrated that the brain generates highly flexible responses to visual perturbations (hand-cursor or target jumps), or following mechanical loads applied to the limb. These parallel approaches have emphasized sophisticated, goal-directed feedback control, but also reveal that flexible perturbation responses are expressed at different latencies depending on what sensory system is engaged by the perturbation. Across studies, goal-directed visuomotor responses consistently emerge in muscle activity ∼100ms after a perturbation, while mechanical perturbations evoke goal-directed muscle responses in as little as ∼60ms (long-latency responses). We discuss the limitation of current models of multisensory integration in light of these asynchronous processing delays, and suggest that understanding how the brain performs real-time multisensory integration is an open question for future studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.