Abstract
This paper describes challenges, solutions, and prospects for data recovery in multilayer magnetic recording (MLMR)—the vertical stacking of magnetic media layers to increase information storage density. To this end, the channel model for MLMR is discussed. Data recovery is described in terms of the readback stage followed by equalization and then detection. We illustrate how deep neural networks (DNNs) can be used to design systems for equalization and detection for MLMR. We show that such DNN-based systems outperform the conventional baseline and provide a good trade-off between complexity and performance. To achieve additional density gains, several prospective methods are discussed. On a physical level, the selective reading of tracks on different layers can be achieved by resonant reading. Resonant reading promises reduced interference from different layers, enabling higher storage densities. Regarding the signal processing, DNNs can be used to estimate the media noise and iteratively exchange soft-bit information with the decoder. Also, to ameliorate partial erasures, an auto-encoder-based system is proposed as a modulation coding scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.