Abstract

To increase the storage capacity limit of magnetic recording channels, recent studies proposed multilayer magnetic recording (MLMR): the vertical stacking of magnetic media layers. MLMR readback waveforms consist of the superposition of signals from each layer recovered by a read head placed above the upper layer. This article considers the problem of equalization and detection for MLMR comprising two layers. To this end, we use MLMR waveforms generated using a grain switching probability (GSP) model that is trained on realistic micromagnetic simulations. We propose three systems for equalization and detection. The first is a convolutional neural network (CNN) equalizer followed by an MLMR Viterbi algorithm (VA) for detection. We show that this system outperforms the traditional 2-D linear minimum mean squared error (2-D-LMMSE) equalizer. The second system uses CNNs for equalization and separation of signals from each layer, which is followed by a regular VA. The third system contains CNNs trained to directly provide soft bit estimates. By interfacing the CNN detector with a channel decoder, we show that an areal density gain of 16.2% can be achieved by a two-layer MLMR system over a one-layer system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.