Abstract

Chronic respiratory diseases, such as the Chronic Obstructive Pulmonary Disease (COPD) and asthma, are a serious health crisis, affecting a large number of people globally and inflicting major costs on the economy. Current methods for assessing the progression of respiratory symptoms are either subjective and inaccurate, or complex and cumbersome, and do not incorporate environmental factors to track individualized risks. Lacking predictive assessments and early intervention, unexpected exacerbations often lead to hospitalizations and high medical costs. This work presents a multi-modal solution for predicting the exacerbation risks of respiratory diseases, such as COPD, based on a novel spatio-temporal machine learning architecture for real-time and accurate respiratory events detection, and tracking of local environmental and meteorological data and trends. The proposed new neural network model blends key attributes of both convolutional and recurrent neural architectures, allowing extraction of the salient spatial and temporal features encoded in respiratory sounds, thereby leading to accurate classification and tracking of symptoms. Combined with the data from environmental and meteorological sensors, and a predictive model based on retrospective medical studies, this solution can assess and provide early warnings of respiratory disease exacerbations, thereby potentially reducing hospitalization rates and medical costs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.