Abstract

AbstractA series of heterodimetallic molecules, centered around an LTi=O→M2+L′ (M = Mn, Fe, Co, Ni, Cu, Zn) core, are described. Each of these complexes are structurally similar, with L = tmtaa and L′ = Py5Me2. The Ti=O→M linkage is slightly bent, varying from 157° (Mn) to 170° (Zn), with bond lengths typical of a dative bond between the Ti=O group and the M2+ center. The relative strength of the heterodimetallic linkage is correlated with the Lewis acidity of the M2+ precursor, with Mn2+ showing the strongest interaction and Ni2+ the weakest. By varying the metal identity the electrochemical properties of the molecules can be tuned, along with the M3+/2+ redox couple. This series of complexes provide a platform for studying structure/function relationships in heterodimetallic molecules linked through a single atom. For instance, spectroscopic features such as IR stretching frequencies can be roughly correlated with structural features such as bond lengths and angles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.