Abstract

Graph coloring problem (GCP) is getting more popular to solve the problem of coloring the adjacent regions in a map with minimum different number of colors. It is used to solve a variety of real-world problems like map coloring, timetabling and scheduling. Graph coloring is associated with two types of coloring as vertex and edge coloring. The goal of the both types of coloring is to color the whole graph without conflicts. Therefore, adjacent vertices or adjacent edges must be colored with different colors. The number of the least possible colors to be used for GCP is called chromatic number. As the number of vertices or edges in a graph increases, the complexity of the problem also increases. Because of this, each algorithm can not find the chromatic number of the problems and may also be different in their executing times. Due to these constructions, GCP is known an NP-hard problem. Various heuristic and metaheuristic methods have been developed in order to solve the GCP. In this study, we described First Fit (FF), Largest Degree Ordering (LDO), Welsh and Powell (WP), Incidence Degree Ordering (IDO), Degree of Saturation (DSATUR) and Recursive Largest First (RLF) algorithms which have been proposed in the literature for the vertex coloring problem and these algorithms were tested on benchmark graphs provided by DIMACS. The performances of the algorithms were compared as their solution qualities and executing times. Experimental results show that while RLF and DSATUR algorithms are sufficient for the GCP, FF algorithm is generally deficient. WP algorithm finds out the best solution in the shortest time on Register Allocation, CAR, Mycielski, Stanford Miles, Book and Game graphs. On the other hand, RLF algorithm is quite better than the other algorithms on Leighton, Flat, Random (DSJC) and Stanford Queen graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.